
Modular Imaging Architecture – A Modular Approach for
Scalable PC Deployment

Josh Kelahan
Saint Louis University

Information Technology Services
St. Louis, MO 63104

+1-314-977-3047

jkelaha1@slu.edu

Chris Koerner
Saint Louis University

John-Cook School of Business
St. Louis, MO 63104

+1-314-977-3600

koernerc@slu.edu

ABSTRACT
One of the difficulties a university IT department faces is trying to
design and support the image for a multitude of different
computer systems. Saint Louis University currently supports more
than ten different computer models. Each model has its own
drivers that can conflict with the drivers of other models. In
addition, trying to keep up with the endless Windows updates and
the updates for all the other software needed on an image can
prove to be an extremely daunting task, even for highly skilled IT
professionals.
Members of Saint Louis University’s Enterprise Infrastructure
Working Group have developed a new imaging architecture that
separates the large components of an image into smaller,
manageable chunks. Each chunk is its own separate image and is
stackable with other images. When these images are assembled
together they create what would traditionally be the image
deployed to all workstations.
By having separate driver images, there is no longer a concern for
drivers of different models conflicting; each model can have its
own driver image. Having the base operating system as its own
image, all of the Windows updates as an image, and all of the
enterprise required software as an image, each of these seemingly
large components can be managed separately. This Modular
Imaging Architecture goes a long way to help improve security by
ensuring that every time a machine is imaged, it will always have
the most up-to-date versions of enterprise software, Windows
updates, and the latest drivers for that system.
.

Categories and Subject Descriptors
K.6.4 [Management of Computing and Information Systems]:
System Management – Centralization/decentralization

General Terms
Management, Design, Reliability, Security, Standardization.

Keywords
Image management, deployment, Imaging, administration,
Modular, Monolithic, Windows, Operating System, Novell,
Linux, updates, enterprise, drivers, Saint Louis University,
Singlecast, Multicast, Master, Client, installation, configuration.

1. HISTORY IN DESIGN
1.1 Ancient Wisdom
In the beginning there was Windows. To install Windows, you put
in the disk, stepped through the prompts, waited a very long time,
then installed updates, applications, etc. This was the way to setup
a computer. This process is very tedious, even with today’s faster
computers, installing and configuring an operating system by
hand takes a bit of time. But there are advantages to installing
your OS by hand. Namely, you know that everything is working,
that all of the drivers are there, that all of the applications are
running properly, and that the system is completely up to date.
Installing an OS by hand can be a major pain if there is more than
one computer. True, you will know that everything is working on
these machines, but somewhere between computer three and
computer three hundred you will get sloppy. You will miss a step,
or something won’t install all the way and you won’t notice.
Further, when an application or new updates come out, you will
probably go with those, and your computers will no longer be
consistent. When it comes to multiple computers, installing the
system by hand just isn’t the best way to go.

1.2 Conventional Weapons
For more than a decade, the de facto standard for keeping a large
number of computer systems in an enterprise running the same
operating system, with the same settings from computer to
computer has been through the use of disk cloning applications
such as Symantec Ghost. The majority of disk cloning
applications work by creating a snapshot of the entire contents of
a hard drive or partition. They copy the Master Boot Record, the
file system, the partition table, and all of the data on the disk to a
compressed image file that can be restored to a different hard disk
at a later time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGUCCS’08, October 19–22, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-60558-074-6/08/10...$5.00.

The image file created by modern disk cloning applications, can
be restored to single pc (Singlecast) or to multiple pc’s at once
(Multicast). This is a tremendous time saver for system
administrators whose time can be better spent not installing
operating systems on hundreds if not thousands of computers. But
it’s not just the operating system that ends up on the image; the
image also contains all of the programs that need to be on all of
the workstations. This would include things like anti-virus
software and patch management software. The image would have
to contain all of the Windows Updates. Every time new updates
come out, the image has to be pulled down, modified, and put
back up. Finally a standard image also contains the drivers for all
of the computers the image needs to run on. The more models of
computer, the more complex the image will be.

1.3 Trouble in Paradise
The problem with conventional imaging comes down to
supporting so many different types of machines. If all the
computers an enterprise had to support were the same model, the
creation of the image would be simple. The image could be
created on one of the computers, and no one would ever have to
worry about drivers. But what happens when an enterprise has
multiple models of computers? What happens when an enterprise
has to support different architectures, different chipsets, and they
all need to run the same image? Still, the management of two or
three images in not terribly difficult, as long as they are basically
the same there shouldn’t be much of a problem recreating steps.
Enterprises that have multiple departments, each with different
needs, different architectures, maybe different locations, with
different software requirements can easily find themselves in
situations where there may be a need to support ten, twenty, or
more different computer models, each with its own set of drivers.
This task can be so daunting, even a team of IT professionals
might have difficulty keeping everything going. When an image
has so many sets of drivers, you run into situations where
computers can pick up the wrong version of a driver, especially if
two computer models are very similar to each other. This is the
primary cause of difficulties IT departments have with using a
single image to deploy and manage their workstations.

2. WHAT IS MODULAR IMAGING?
2.1 Building Blocks
Monolithic imaging (conventional imaging) is the practice of
putting everything on one image. This would include (but is not
limited to) the operating system, updates, applications, drivers etc.
Modular imaging on the other hand refers to the separation of
these core pieces into individual images. Each of these individual
images is stackable, one on top of another. The separation of these
portions of a traditional workstation build provides for better
scalability, security, standardization, and reliability than building
from scratch or using a single image. Because of this key
difference, it becomes very easy to manage so many different
models of computers because they can all run the same resultant
set of images (except for the drivers of course) known as the
Deployed Image.

2.2 Climbing a Mountain
As enterprises grow, they naturally accumulate new computers. It
falls of course to the IT department to try to keep new computers

and old computers running together in the same environment. This
means that all of the computers have to use the same image.
Because drivers are in their own image in modular imaging, an
unlimited number of computer models can be supported.
The scaling of modular imaging is therefore most like building out
a workstation from scratch, where it can be ensured that each
workstation will have all the correct drivers at image time. This
approach also streamlines the sysprep/mini-setup process. There is
no need for mini-setup to scan hundreds of drivers, the exact
drivers are provided for the system.

2.3 Securing the Enterprise
Security is something that doesn’t get thought about enough when
it comes to creating an image. This probably has to do mostly
with the way Windows was originally designed. Because of this
indiscretion, the problem falls on the shoulders of IT
professionals. One of the easiest ways to help secure a system is
to install the critical updates from Microsoft. With modular
imaging, all of the updates can be separated out into their own
image. This makes the updates much easier to manage, as new
updates can be easily added to the updates image. This ensures
that every time a workstation is imaged, it has the most up to date
security.

2.4 Stand and Deliver
Modular imaging enforces standards because it has to build out
the resultant set of images every time a machine is imaged. This
forces all computers to work exactly the same way. Sure the
images can individually be modified, but each machine still
receives the core set of images (windows updates, enterprise
applications, etc).
When standards are in place, things tend to be much more
reliable. This holds especially true for modular imaging. Because
each machine at imaging gets the same set of images in a well
documented order, there can be no surprises that would otherwise
cause instability. Testing also becomes very easy, since all
computers run the same deployed image each machine is the same
as the next one.
One big advantage is that because the modular has everything
segmented out into different images, updating those images is
much easier. If a new update comes out, it can be added to the
updates image very easily. There is no need to pull down the full
Windows image as with monolithic imaging, and so there is a
greatly reduced chance for errors in this regard.

3. BUILDING A NEW ARCHITECTURE
3.1 Exploding the Image
During the transition from a distributed IT environment where
every department managed their own areas to a centrally managed
environment, technical staff at Saint Louis University ran into a
huge problem. Spread out across campus, no less than 27 different
computer models needed to be supported. Integrating the driver
sets for all 27 models was nearly impossible. At the same time,
Apple was releasing their first beta of their Boot Camp product
and many users around the university were asking to dual boot
their Macintoshes.
Boot Camp allowed Macintosh computers to run a native
Windows XP installation. While attempting to discover a way to
image a Mac with our ZENworks Boot CD and monolithic base

image, we started discussing how to include drivers for the
specific hardware in the different Mac models. It was apparent
that updating our existing infrastructure to include the various
models would be time consuming and had the potential to
inadvertently break our existing Windows XP image.
We then began discussing some of the inherent flaws with the
Monolithic imaging process and how having one image to rule
them all was not as scalable as we had hoped. The group
researched the availability of add-on images using the Novell
Imaging Engine. These add-ons would allow for not only the
separation of Mac and PC model specific drivers, but other
components of our enterprise image as well.
Once it was known that we could stack images one on top another
and create a single image, the question became, what pieces do we
want to have in separate images. The obvious is the pieces of
enterprise required software and the drivers for individual
machines. Also it was decided, one image for just Windows XP
SP2, and images for each HAL (single/multi core). These four
images together combine to create the standard deployed image
along with the option for an optional departmental add-on image.

3.2 Image Types
3.2.1 The Base Image
The base image contains just Windows XP Service Pack 2 and all
of the Windows updates up to the day it was created. The idea
here is that once this image is created, it never has to be modified.
All updates can be installed via a different image. This keeps the
modular imaging architecture secure, stable, and reliable because
this file never has to change. This image is created by installing
the operating system on a pc, but not installing many drivers.
After the installation is perfected, the infcache can be dumped
before sysprep is run, effectively removing the drivers that won’t
be needed for most other systems. Updating this image would be
difficult because you would have to drop it on a machine, make
modifications, sysprep it, and put it back. Modifying this image,
just like modifying a standard monolithic image can be dangerous.
If the file structure, partition table, or system registry becomes
corrupt, the image will not work, and will have to be rebuilt. The
other images can be modified by using a simple drag and drop
interface with Novell’s Image Explorer.

3.2.2 Windows Updates Image
The Windows updates image as its name specifies contains all of
the Windows Updates since the base image was created. A simple
batch file in this image runs during mini-setup, which searches for
the Windows Update executables found in a folder also on this
image. The updates are then installed one after another. When the
computer restarts it should be completely up-to-date patch wise.

3.2.3 Enterprise Agents Image
The enterprise agents image contains the software necessary to
run the system on the network. At Saint Louis University, this
includes the Novell ZENworks pieces: the ZENworks for
Desktops Agent, the Novell Client, and iPrint; Patchlink, the patch
management system for already imaged workstations, and an anti-
virus application. These are all applications, which are not
necessary to the computer but allow the computer to work in a
specific way, and are identical from computer to computer. These
applications are better here than say in the base image because
they will change over time. The new executables can be dragged
into this image, and there is no need to pull down the base image.

The applications install during mini-setup via a batch script that is
included in this image.

3.2.4 Drivers Image
At Saint Louis University, we currently have twenty-seven
different driver images. Each image contains the driver set of one
computer model. The structure of the image is very simple,
organized by component: chipset, nic, video, etc. During the
imaging process, the imaging script determines the model of the
computer, and pulls down the appropriate driver image file.

3.2.5 The HAL Image
The HAL or Hardware Abstraction Layer image consists of the
specific files that are different from a computer running on a
single core system to a dual or multi-core system. At the end of
the imaging process, the imaging script determines which HAL is
appropriate for the computer, and applies that image. The HAL is
separate from the driver image because different revisions of
some computer models can have different processors, and thus
can require a different HAL.

3.2.6 Optional Departmental Add-On Image
The departmental image (optional as the name suggests) can be
used to inject files and folders onto a workstation at imaging time.
This can be useful for department specific add on hardware such
as a printer or simply getting a bunch of files onto a workstation.
While it could be used to install additional software, just like the
Enterprise Agents image, it is not recommended. Pushing
application packages to the workstation is much more effective
for departmental level support needs. If the departmental image
contains a batch file it is run during mini-setup before other batch
files from the other images. The idea here is to enforce content
coming from the enterprise, and ensure that a department cannot
override enterprise required settings using a script.

3.3 Preparing the Images
The Modular Imaging Architecture relies heavily on the
leveraging of Microsoft’s sysprep/mini-setup tool. As noted, each
of the add-on images (Windows Updates, Enterprise Agents,
Drivers & Departmental) contains a batch script that executes
during the mini-setup process. In the base image, there is a batch
file that runs at the end of sysprep, that looks for the batch files in
the add-on images, and runs them if they are present.
All of the add-on images are created using a simple image editing
tool called Image Explorer. The tool allows for the dragging and
dropping of files and folders into an image.

4. CUSTOMIZATION
4.1 Linux Imaging Engine
The imaging script is contained in a bash script executed from a
very small distribution of Linux that uses the isolinux/pxelinux
bootstrap utility. Because the imaging script is written in bash, it
is infinitely customizable. In addition to the actual imaging, the
engine is capable of reading from an SMI compatible BIOS to get
key system information such as the Model of the computer (used
in determining which driver image to use) and the type of
processor (used in determining which HAL to use). The script can
even go so far as to see if the BIOS needs to be upgraded before
imaging can continue.

4.2 Distributed Customizations
The imaging script reads a file, settings.txt, at boot time, that
contains a group of departmentally defined variables. These
variables tell the imaging engine whether to use a particular
modified base image, which imaging server to use and if and
where the engine can find a departmental add on.

5. TECHNOLOGY
5.1 Imaging Workstations
Using Novell’s Imaging Engine, members of Saint Louis
University’s Enterprise Infrastructure Working Group (EIWG)
were able to create an environment where we can stack images
one on top of another to create the Modular Imaging Architecture.

5.1.1 Single and Multi-cast
Modular Imaging can be used for either singlecasting, imaging
one machine at a time, or multicasting, imaging a bunch of
computers at once. The difference (other than the obvious) is the
order in which images are applied.

5.1.1.1 Singlecast
Singlecast applies all the images that make up the deployed image
in this order: 1. Base Image, 2. Windows Updates image, 3.
Enterprise Agents image, 4. Model specific Driver image, 5.
Workstation specific HAL image, 6. Optional Departmental
image. After these images are applied, the script sets the computer
name and restarts the system. At this point imaging is complete,
and mini-setup runs. As previously noted, during mini-setup,
batch file scripts contained in the Departmental, Windows
Updates, and Enterprise Agents images are executed to complete
the installation.

5.1.1.2 Multicast
A multicast session requires at least two computers. One computer
has to be the master, and the rest of the computers are the clients.
When starting the multicast, the user must select whether the
system is to be a master or client.

5.1.1.2.1 Master
The master begins the imaging process by pulling down the
following images in this order: 1. Base Image, 2. Windows
Updates image, 3. Enterprise Agents image, and 4. Optional
Departmental image. Once these images are on the workstation,
the master creates a session, and waits for clients to connect. Once
connected, an administrator must initialize the multicast. This
conglomeration of images is then pushed out to the client
workstations that have joined the session. After the master
finishes pushing to the clients, it downloads the drivers and HAL
images before the imaging is complete for the master workstation.

5.1.1.2.2 Client
The client begins by waiting for the multicast session to start.
During the session, the client receives one image file, which is the
resultant set of the Base, Windows Updates, and Enterprise
Agents images. After this multicast session completes, all of the
clients individually download and apply their model specific
driver images, and workstation specific HAL images. This setup
allows an administrator to image multiple computer models at
once, and still ensures that each computer gets the proper drivers.

5.1.2 Applying an Image to a Workstation
Applying an image to a workstation is very easy with Novell’s
Imaging Engine. The command can be encapsulated inside a
function in a bash script. This allows for the stacking of the
images. If two image files contain the same file, the file in the last
image applied will be the one on the machine when imaging is
complete. The command requires an image server, a proxy server
and of course, an image file.

5.1.3 Discovering the Workstation Model
One of the core functions in the Modular Imaging Architecture is
the ability to have a separate model specific Driver image for each
model computer that is supported. The drivers on a particular
Driver image pertain only to that model, and shouldn’t be used for
any other model computer.
The model of the computer can be retrieved by probing the BIOS
of the workstation. This information is stored differently
depending on the manufacturer of the workstation, so it is
important to check first for who makes the workstation, and then
check what the model is.

restore_image() {
 img rp $IMAGE_PRXY
\/\/$IMAGE_SRVR\/path_to_file\/$IMAGE_FILE
 if [$? = 1] ; then
 echo “Image $IMAGE_FILE.zmg restored”
 else
 EIWG_ERRORCODE=1
 pause
 fi
}

driver_image_addon() {
 #Different manufacturers store the model differently
 MANUFACT=`hwinfo --bios | grep -A 5 "System Info" | grep
"Manufacturer" | awk 'BEGIN {FS = "\""} {print $2}'`
 case $MANUFACT in
 "IBM")#Its an IBM
 SYSTEMTYPE=`hwinfo --bios | grep -A 5 "System Info" |
grep "Version" | awk 'BEGIN {FS = "\""} {print $2}' | awk 'BEGIN
{ FS = " "} {print $1$2}'`
 ;;
 "LENOVO")#Lenovo
 SYSTEMTYPE=`hwinfo --bios | grep -A 5 "System Info" |
grep "Version" | awk 'BEGIN {FS = "\""} {print $2}' | awk 'BEGIN
{ FS = " "} {print $1$2}'`
 ;;
 *)#Everything else
 SYSTEMTYPE=`hwinfo --bios | grep -A 5 "System Info" |
grep "Product" | awk 'BEGIN {FS = "\""} {print $2}' | awk
'BEGIN { FS = " "} {print $1$2}'`
 ;;
 esac
 SYSTEMTYPE="path_to_file/$SYSTEMTYPE"
}

5.1.4 Discovering the HAL
Similar to determining which driver image to use, the BIOS again
needs to be probed to determine which HAL is most appropriate.
In general, there are only two HAL’s for PC workstations. One
HAL is for systems with multiple CPU’s or multiple cores. The
other HAL is for systems with only a single, single cored CPU.
There is also a separate HAL for VMware virtual workstations as
well.

5.1.5 Creating the Base Image
When an administrator creates the base image, he has to install the
operating system from scratch, and get the workstation into
working order without installing too many of the drivers.
Afterwards, the administrator can delete the infcache (effectively
removing the unwanted drivers, and sysprep the machine).
The Modular Imaging Architecture provides to create images as
well. Again, the code is encapsulated so the administrator does not
really have to think about what he has to do, he can simply run the
function from the menu provided by the modular imaging
architecture.

5.1.6 Getting the Serial Number
At Saint Louis University, our naming convention uses a three or
four letter acronym of the department, followed by the serial
number of the computer. While it is easy in most cases for
someone to just type this information in, we thought that this
might make naming a bit too prone to human mistakes. So
instead, we prompt the user only for the department acronym, and
probe the BIOS for the serial number of the workstation.

6. SUCESSES
Due in part to the modular nature of the architecture and how
flexible and clearly defined it is, the adoption of this architecture
at Saint Louis University was swift and has been met with great
success across the enterprise. Training of full-time staff and our
student workforce was simple and informative.
New modifications are reviewed by the EIWG and are tested
before placed into production. Changes usually only target a
specific add-on and have zero chance on modifying the
functionality of other models in production.
Due to a smaller more specific payload, the imaging time of the
average workstation has decreased to nearly twenty-five percent
of the original time. Whereas it would take around 20 minutes to
image a single workstation with our monolithic process it takes
only 5 to 7 minutes with the Modular Imaging Architecture.
The security and reliability of the modular architecture is also
improved over the more static monolithic image. We can be more
proactive with regards to windows updates and in case of
emergencies can respond to situations with ease. In fact we often

get_mp_hal() {
 if [`hwinfo --smp | grep -ic 'Yes'` = "1"]; then
 img rp $IMAGE_PRXY
\/\/$IMAGE_SRVR\/path_to_file\/add-hal-multi.zmg
 else
 img rp $IMAGE_PRXY
\/\/$IMAGE_SRVR\/path_to_file\/add-hal-acpi.zmg
 fi
}

make_zen_image() {
 get_image_name
 img makep $IMAGE_PRXY
\/\/$IMAGE_SRVR\/path_to_fileIMAGE_FILE.zmg
 if [$? = 0] ; then
 echo "Image $IMAGE_FILE.zmg created on
$IMAGE_SRVR"
 else
 echo -e "Image creation
${RED}FAILED!${MAINCOLOR}"
 fi
 pause
}

set_computer_name() {
#Get Zone ID
 if [-z "$1"] ; then
 echo -n "Please Enter the Zone ID (ex: ITS) |> "
 read zoneid
 else
 #If set in settings.txt
 zoneid=$ENV_ZONEID
 fi
#Set the computer name
 SERIAL=`hwinfo --bios | grep -A 5 "System Info" | grep "Serial" |
awk 'BEGIN {FS = "\""} {print $2}'`
 SERIAL=${SERIAL// }
 if ["$SERIAL" == ""] ; then
 #Putting aprompt for people too stupid to set the serial number
 echo "This computer's serial number is Missing! Please Enter
it Now |>"
 read SERIAL
 fi
 echo -n "Is this Computername correct? $zoneid-$SERIAL
([y]/n) |> "
 read CNAMECORRECT
 if [$CNAMECORRECT = "n"] ; then
 echo -e "Please specify the computer name |> "
 read COMPUTERNAME
 export COMPUTERNAME
 else
 COMPUTERNAME=`echo -e "$zoneid-$SERIAL"`
 export COMPUTERNAME
 fi

}

have model-specific driver add-ons available before new models
are seen on campus.

7. FUTURE WORK
Besides the continued maintenance of the modular architecture we
are looking into the future planning of the desktop environment at
the enterprise level. There is discussion on how this could be
applied to other managed operating systems such as Linux or OS
X. While we currently do not have a management scheme for
either OS, something structured in the same manner as our
Windows environment would be as equally beneficial.
Eventually, we will have to make the jump to Windows Vista.
Since there are new sysprep and mini-setup features in Vista we

will be reviewing how we will need to modify and tweak our
modular architecture. The core concepts and ideas formed out of
this architecture will be of great assistance in deploying and
managing whatever our next enterprise OS may happen to be.

8. ACKNOWLEDGMENTS
We would like to thank the following people, without their help
the Modular Imaging Architecture would never have gotten off
the ground (arranged alphabetically):

Jeff Abernathy, John Ashby, Kyle Aumiller, Wayne Donjon,
Mary Estes, Todd Fallert, Matt Goeke, Mourad Halimm, Jim
Hooper, Robert Kaikati, Mark Mesko, Corey Webb, Jean White.

